Clinical Results with Combination of Anti-CD27 Agonist Antibody, Varlilumab, with Anti-PD1 Antibody, Nivolumab, in Advanced Cancer Patients

Rachel E. Sanborn¹, Michael J. Pishvaian², Harriett Kluger³, Margaret K. Callahan⁴, Amy Weise⁵, Jose Lutzky⁶, Michael Yellin⁷, Tracey Rawls⁷, Laura Vitale⁷, Abdel Halim⁷, Tibor Keler⁷, Tom Davis⁷ and Naiyer Rizvi⁸

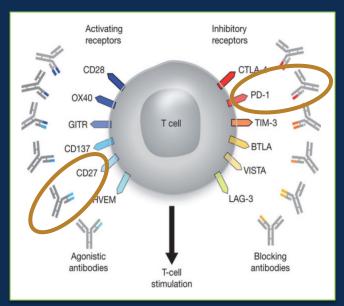
¹ Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR, ² Georgetown University, Washington, DC, ³ Smilow Cancer Hospital at Yale-New Haven, New Haven, CT, ⁴ Memorial Sloan Kettering Cancer Center, New York, NY, ⁵ Karmanos Cancer Institute, Detroit, MI, ⁶ Mount Sinai Comprehensive Cancer Center, Miami Beach, FL, ⁷ Celldex Therapeutics, Hampton, NJ, ⁸ Columbia University Medical Center New York-Presbyterian Hospital, Herbert Irving Pavilion, New York, NY

Disclosures

- Honoraria AstraZeneca
- Consulting or Advisory Role Amgen; ARIAD;
 Genentech/Roche; Peregrine Pharmaceuticals; Seattle Genetics;
 Celldex Therapeutics (advisory board)
- Research Funding Bristol-Myers Squibb (Inst); MedImmune (Inst); Merck
- Travel, Accommodations, Expenses Five Prime Therapeutics

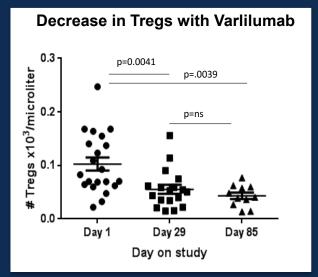
Enhancing the Efficacy of Immune Checkpoint Blockade

Nivolumab, a fully human IgG4 mAb that binds to PD-1 and inhibits PD-1/PD-L1 interactions, is approved for multiple indications but many opportunities to improve efficacy remain

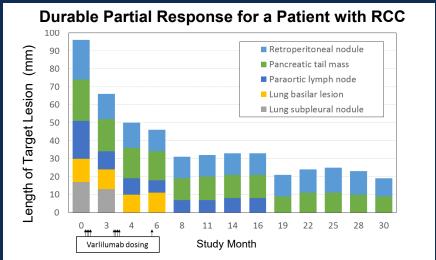

Combination strategies that target T cell costimulation molecules such as CD27 may enhance clinical responses to checkpoint blockade

CD27: Member of the TNF-receptor superfamily

- Single ligand is CD70 (tightly regulated)
- Constitutively expressed on most T cells and a subset of B and NK cells
- CD27 activation:
 - Signaling through Traf2, Traf 5
 - Activation of the NF-κB pathway
 - Cell survival, activation, proliferation
 - Role in generation and long-term maintenance of T cell immunity
 - Role in NK cell differentiation/activation


Varlilumab: Fully human IgG1 CD27 agonist mAb

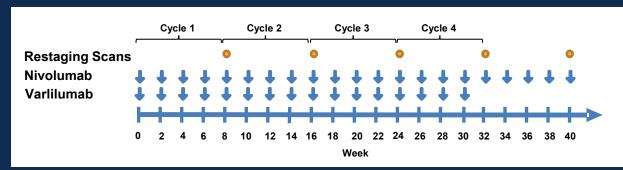
Strong preclinical data demonstrating single agent and combination activity in tumor models



Varlilumab Clinical Experience: Phase 1 Monotherapy Trial

- Safety profile appears favorable in its class of agonist mAbs; minimal toxicities; no significant immune-mediated AEs 1, 2, 3
- Potent immunologic activity consistent with MOA^{1, 2, 3}
 - Rapid induction of pro-inflammatory IFN-γ driven chemokines, increased expression of T cell activation markers, and marked decrease in T regs without evidence of broad T cell depletion

- Single-agent antitumor activity demonstrated in advanced, refractory patients with solid tumors or hematologic malignancies (n=90)^{1, 2, 3}
 - Three patients experienced objective responses
 - Patient with HL achieved a CR after 3 cycles of varlilumab (0.3 mg/kg). Remains in remission at 33.1+ months without further anticancer therapy
 - Patient with RCC achieved a PR with varlilumab (3 mg/kg). PR persists at 2.5 years without further anticancer therapy (see graph below)
 - Patient with RCC completed 5 cycles of varlilumab (3 mg/kg) and maintained stable disease until achievement of a single-time point PR at 4.2 years without additional anticancer therapy
 - Twelve patients experienced SD up to 14 months



Phase 1/2 Study of Varlilumab in Combination with Nivolumab

Phase 1: Dose escalation/expansion of varlilumab (0.1, 1, and 10 mg/kg) with nivolumab 3 mg/kg

- 6 initial patients per cohort, with option for expansion to 15 patients
- Objectives:
 - Primary: safety and tolerability, identify varlilumab doses for Phase 2 cohorts
 - Secondary: DOR, TTR, PFS, OS, Immunogenicity and PK
 - Exploratory: Pharmacodynamic effects on peripheral blood and tumor markers

- Key eligibility criteria:
 - Recurrent or refractory SCCHN, ovarian cancer, melanoma,
 NSCLC, or CRC
 - Documented progressive disease
 - ≤ 5 prior anticancer regimens for advanced disease
 - ≥ 3 month washout for anti-CTLA-4 or other T cell directed mAbs
 - No prior anti-PD-(L)1 therapy
 - No active, untreated CNS metastases
 - No autoimmune disease

- Tumor biopsies at baseline and onstudy (4-6 weeks)
- Four 8-week cycles of combination therapy, followed by nivolumab monotherapy
- Treatment until dose-limiting toxicity or disease progression

Phase 2: Tumor-specific cohorts (CRC, GBM, Ovarian, SCCHN, and RCC) to evaluate clinical activity of selected varlilumab dose(s) and schedules with nivolumab flat dose (240 mg)

PRESENTED AT: ASCO ANNUAL MEETING '17 #ASCO17

Baseline Patient Characteristics

	0.1 mg/kg (n=6)	1 mg/kg (n=15)	10 mg/kg (n=15)	All Phase 1 (n=36)
Age, years (median [range])	66 (57-76)	54 (40-66)	50 (29-84)	57 (29-84)
Male (n [%])	3 (50)	8 (53)	7 (47)	18 (50)
Primary Diagnosis (n [%])				
CRC	5 (83)	8 (53)	8 (53)	21 (58)
Ovarian	1 (17)	4 (27)	3 (20)	8 (22)
Melanoma	0	1 (7)	3 (20)	4 (11)
SCCHN	0	2 (13)	1 (7)	3 (8)
ECOG performance status (n [%])				
0	2 (33)	3 (20)	9 (60)	14 (39)
1	4 (67)	12 (80)	6 (40)	22 (61)
Stage IV at Study Entry (n [%])¹	5 (83)	15 (100)	14 (93)	34 (94)
No. of prior treatment regimens (median [range])	3 (2-4)	4 (0-9)	3 (0-8)	3 (0-9)
Prior immunotherapy (n [%])	1 (17)	1 (7)	1 (7)	3 (8)
PD-L1+ tumor (n/n [%]) ²	0/6 (0)	1/11 (9)	2/11 (18)	3/28 (11)

¹ Two stage III patients were ovarian cancer (0.1 mg/kg group) and SCCHN (10 mg/kg group).

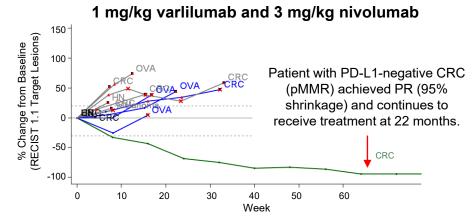
² Denominator represents patients with tumor assessed for PD-L1 status. PD-L1+ criteria: ≥ 1% tumor cells staining positive, using the BMS developed PD-L1 IHC method at a central lab

Varlilumab & Nivolumab Combination Therapy is Well Tolerated

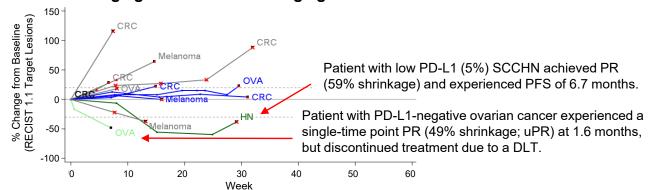
- All dose levels well tolerated, without identification of a maximally tolerated dose
- No evidence of additive toxicity for the combination of varlilumab with nivolumab
- 3 patients discontinued the study due to treatment related AEs
- 3 patients with treatment-related* SAEs (all 10 mg/kg varlilumab):
 - Peripheral sensorimotor neuropathy (grade 2)
 - ALT increased (grade 3)
 - Acute kidney injury (grade 3) and hepatitis (grade 4 and a dose-limiting toxicity)

Treatment-Related Adverse Events


	All Phase 1 (n=36)		
	Any Severity	Grade ≥ 3	
Any treatment-related adverse event	31 (86%)	10 (28%)	
Infusion related reaction	10 (28%)	0	
Fatigue	10 (28%)	0	
Lymphopenia	9 (25%)	6 (17%)	
Pruritus	8 (22%)	0	
Rash	11 (19%)	1 (3%)	
Nausea	7 (19%)	0	
Arthralgia	5 (14%)	0	
Pyrexia	4 (11%)	0	
Vomiting	4 (11%)	1 (3%)	
ALT increased	4 (11%)	2 (6%)*	
AST increased	3 (8%)	1 (3%)*	
Lipase increased	2 (6%)	2 (6%)	
Acute kidney injury	1 (3%)	1 (3%)*	
Amylase increased	1 (3%)	1 (3%)	
Autoimmune hepatitis	1 (3%)	1 (3%)*	
Blood alkaline phosphatase increased	1 (3%)	1 (3%)*	
Blood bilirubin increased	1 (3%)	1 (3%)*	


Table includes adverse events assessed as related to either varillumab or nivolumab for ≥ 10% of patients overall, or at grade ≥ 3 severity any patient.

^{*}The above SAEs were related to varlilumab and nivolumab


^{* 1} patient had all AEs (excluding 1 incident of ALT increased)

Tumor Response

10 mg/kg varlilumab and 3 mg/kg nivolumab

Disease Control Rate*

• 0.1 mg/kg varli + nivo: 1/5 (20%)

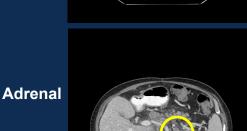
1 mg/kg varli + nivo: 5/15 (33%)

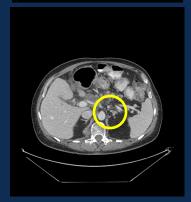
• 10 mg/kg varli + nivo: 6/15 (40%)

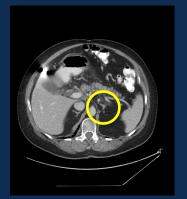
^{*} DCR; best response of SD or better ≥ 3 months

Durable Response in MMR-proficient CRC Patient

4-23-2015 (Baseline)


6-29-2015 (Cycle 1)


3-06-2017 (Cycle 12)



- PD-L1-negative, pMMR colorectal adenocarcinoma with metastatic disease to liver, adrenal gland, abdomen and mesenteric nodule¹
- 2 prior chemotherapy based regimens (1 with EGFR targeted therapy)
- On study, had a 95% decrease in target lesions, including resolution of 4/5 target lesions. One 6 mm mesenteric nodule remains
- Completed all 4 cycles of varlilumab and nivolumab therapy and continues to receive nivolumab monotherapy at 22+ months
- Treatment-related toxicity limited to grade 1 pruritus, fatigue, chills and fever

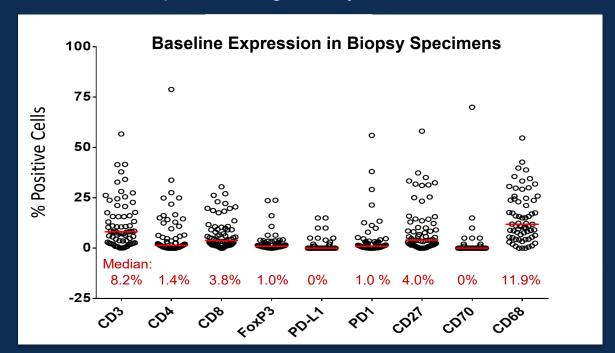
Liver

¹Expected response rate for nivolumab in MSI-low (pMMR) CRC is 0% (Overman, et al, ASCO 2016)

PRESENTED AT: ASCO ANNUAL MEETING '17 #ASCO17

Extensive Immune Monitoring Incorporated into the Study

- Peripheral blood: serum factors, flow cytometry
- Tumor biopsies: baseline and on-treatment immunohistochemistry

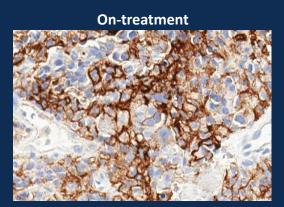

- Peripheral blood analysis
 - Prominent decrease in CD4 and Treg cells observed across all cohorts
 - Serum chemokine changes consistent with varlilumab monotherapy
 - Transient increase in inflammatory chemokines (CXCL10, MCP-1, MIP-1β and MIG) observed across all cohorts

100 CD4 Treg 50 50 Baseline -100 C1DS2 C2DS1 C2DS1 from Median: Median: -76% 100 Change CD8 NK 100 50 % -100 C2DS1 C2DS1 C1DS2 Median: -10% 32% Median:

The correlative analysis contains patients from Phase 1 and patients with data from Phase 2

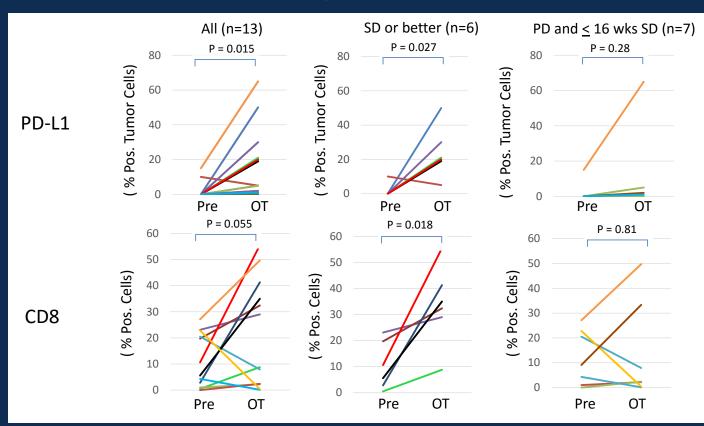
Immunohistochemistry of Biopsy Samples

Baseline biopsies were generally low in T cell markers and PD-L1 expression on tumor


Includes patients from Phase 1 (n=28) and Phase 2 (n=37)

- T cell infiltrates and PD-L1 expression increased significantly during treatment in some patients
- This was particularly evident in a sub-group analysis focused on ovarian patients

Tumor Expression of PD-L1 is Increased in Ovarian Patients


- Baseline biopsies were generally negative or low PD-L1 positive
 - 10 of 26 (38%) had PD-L1 + tumors; range 1%-15% (mean = 5.1%)
- Patients with paired biopsies (n=13):
 - 2 of 13 patients were positive at baseline (10%, 15%)
 - 10 of 13 (77%) were PD-L1 + on-treatment (4-6 weeks); range 1-65% (mean = 20.8%)

Baseline

PD-L1 testing was performed using the BMS developed PD-L1 IHC method (Dako clone 28-8); PD-L1+ defined as >1% of tumor cells

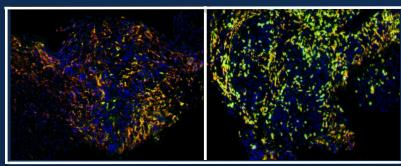
Enhanced PD-L1 Expression and CD8 TIL in Ovarian Patients

Ovarian patients with paired baseline and on-treatment biopsies to date

Phase 1 patients n=6 Phase 2 patients n=7

P value: 2-tailed Paired T-Test

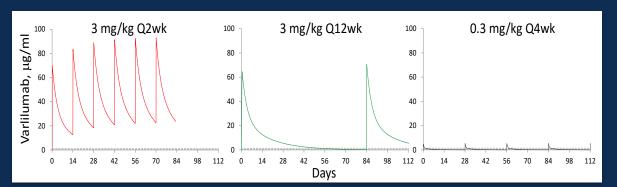
Optimization of Dosing Regimen


Red = CD3

Green = PD-1

- Chronic CD27 stimulation may not be optimal
 - Evidence of T cell infiltration, but also PD-1 expression
 - Potential for immune exhaustion

Alternate dosing regimens selected using receptor occupancy data and PK modeling


Ovarian Patient with SD

Baseline = 21% PD-1+

OT = 69% PD-1+

Continuous saturation or clearance following high or low dose of varlilumab

Planned Phase 2 Cohorts:

- CRC (n=18), GBM (n=20) and RCC (n=25): varlilumab 3 mg/kg q 2 weeks
- Ovarian and SCCHN:
 - Varlilumab 3 mg/kg q 2 weeks (n=18)
 - Varlilumab 3 mg/kg q 12 weeks (n=18)
 - Varlilumab 0.3 mg/kg q 4 weeks (n=18)
- All receive nivolumab flat dose (240 mg) q 2 weeks

Conclusions and Next Steps

- The combination of varlilumab and nivolumab was well tolerated at all varlilumab dose levels tested
- The majority of tumors were PD-L1 negative at baseline and 80% of patients enrolled in Phase 1 had CRC or ovarian cancer
 - Representing patient populations expected to have minimal response to checkpoint blockade
- Clinical responses were observed in the Phase 1 portion of the study, including a durable partial response in a patient with pMMR CRC
- Increase in CD8 TILs and tumor PD-L1 expression in some patients
 - In ovarian patients, trend for better disease control
- Alternative varlilumab dosing regimens added to the study to explore intermittent CD27 signaling

Acknowledgments

Thank you to the patients who participated in this study

- Study CDX1127-02 investigators and their staff
 - Rachel Sanborn
 - Michael Pishvaian
 - Mario Sznol
 - Margaret Callahan
 - Amy Weise
 - Jose Lutzky
 - Naiyer Rizvi
 - Toni Choueiri
 - Branimir Sikic
 - Jeanny Aragon-Ching
 - Alexander Starodub

- Celldex
 - Thomas Davis
 - Tibor Keler
 - Michael Yellin
 - Tracey Rawls
 - Laura Vitale
 - Abdel Halim
 - Thomas Hawthorne
 - Jennifer Newman
 - Elsa Paradise
 - Renee Riggs
 - Theresa Belotti
 - Yi He
 - Hui Zhang
 - Tianshu Li

- Bristol-Myers Squibb
 - Steven Averbuch
 - Sutapa Mukhopadhyay
 - Wendy Clemens
 - Alexander Cao