A Phase I Study of an Agonist Anti-CD27 Human Antibody (CDX-1127) in Patients with Advanced Hematologic Malignancies or Solid Tumors

Initial Report of Dose-Escalation in Solid Tumors

Burris, Howard¹; Ansell, Stephen²; Nemunaitis, John³; Weiss, Geoffrey⁴; Sikic, Branimir⁵; Northfelt, Donald⁶; Pilja, Lana⁷; Davis, Thomas⁷; Yellin, Michael⁷; Keler, Tibor⁷; Bullock, Timothy⁴

1.Sarah Cannon Research Institute, Nashville, TN; 2. Mayo Clinic, Rochester, MN, United States; 3. Mary Crowley Cancer Research Center, Dallas, TX, United States; 4. University of Virginia, Charlottesville, VA, United States; 5. Stanford Cancer Institute, Stanford, CA, United States; 6. Mayo Clinic, Scottsdale, AZ, United States; 7. Celldex Therapeutics, Inc., Phillipsburg, NJ, United States.

CDX-1127: A fully human mAb to CD27

- CD27 is a potent co-stimulatory molecule that drives T cell activation and survival through interaction with CD70.
- CDX-1127 is an agonist anti-CD27 IgG1 mAb that induces activation and proliferation of human T cells when combined with T-cell receptor stimulation.
- CDX-1127 has been shown effective in murine tumor models alone, and now in combination with chemotherapy or check-point inhibitors (poster 85).

Phase 1 Clinical Study Design

- Two study arms: Hematologic Malignancies (poster 144) and Solid Tumors
- Solid tumor patient eligibility:
- Histologic diagnosis of:
 - metastatic melanoma
 - renal cell carcinoma
- colorectal adenocarcinoma non-small cell lung cancer

ovarian cancer

- hormone-refractory prostate adenocarcinoma
- Progressive disease subsequent to previous therapies; no remaining approved therapy options
- Washout from prior therapies including:
- ≥4 weeks for chemotherapy (or 5 half-lives, if longer), monoclonal based therapies and systemic radiation
- ≥2 weeks for all other immunotherapy
- Standard 3+3 dose-escalation (0.1, 0.3, 1, 3 or 10 mg/kg)
- Weekly dosing to establish safety with maximum exposure
- Subsequent malignancy-specific expansion cohorts to further characterize activity of CDX-1127

Treatment Schema

Dose-Escalation Phase

Solid Tumor Dose-Escalation Results (continued)

- Safety CDX-1127 administration
- associated with minimal toxicity 10 mg/kg dose level reached without identification of a
- Maximum Tolerated Dose (MTD) • One DLT: Grade 3 transient
- asymptomatic hyponatremiia 14 days after the single dose (1.0 mg/kg)
- No additional DLT or treatmentrelated toxicity resulting in treatment discontinuation

Single dose PK values

→ 1 mg/kg n = 2

→ 10 mg/kg n = 3

1000

100

10

0.1

CDX-1127 **↑**

Day0

50.0

40.0

30.0

20.0

10.0

0.0

Day

CDX-1127 **1**

CDX-1127

Ē

(gul)

1127

Ň

10

400

Treatment-Related Adverse Events (n=23)						
	Grade 1	Grade 2	Grade 3	Overall		
Decreased appetite	2 (8%)	-	1 (4%)	3 (12%)		
atigue	3 (12%)	-	-	3 (12%)		
Chills	1 (4%)	1 (4%)	-	2 (8%)		
Diarrhea	2 (8%)	-	-	2 (8%)		
lyperhidrosis	2 (8%)	-	-	2 (8%)		
Peripheral edema	2 (8%)	-	-	2 (8%)		
Rash maculo-papular	2 (8%)	-	-	2 (8%)		
lerpes zoster	-	1 (4%)	-	1 (4%)		
lyponatremia	-	-	1 (4%)	1 (4%)		
ymphopenia	-	-	1 (4%)	1 (4%)		
able does not include grade 1 advarge events that ecourred in one nations						

Table does not include grade 1 adverse events that occurred in one patient

Circulating levels of NK cells and Tregs

21

Circulating lymphocyte levels

B cells

No evidence of major depletion of lymphocytes

· Some trends observed without correlation to dose levels

T cell Activation and Functional analysis

Activity to Date

- Four patients with stable disease (3.0, 3.8, 5.7, 14+ months)
- An 83 year old male with Stage IV renal cell carcinoma metastatic to liver and lung has completed 5 cycles of CDX-1127 (3.0 mg/kg) and remains progression-free without tumor growth at 14+ months after study entry
 - Patient previously progressed on prior therapies at 3 months (sorafenib/everolimus) and 9 months (capecitabine)
- A 69 year old man with Stage IV colorectal cancer metastatic to liver, lung and peritoneum was treated with CDX-1127 (1 mg/kg) and had 33% unidimensional shrinkage of measurable disease at 5.7 months
 - Shrinkage was associated with new lesions, representing a mixed response. By immune related (IR) response criteria (Wolchok 2009) the patient had irSD with 45% shrinkage.
 - Patient had previously received 3 lines of therapy, including bevacizumab/FOLFIRI/investigational therapy, and progressed after two weeks of capecitabine/radiation.
- A 66 year old male with Stage IV melanoma with visceral metastases was progression-free until 3.8 months.
 - Patient previously progressed through IL-2 at 2 months, ipilimumab within 4 months and two rounds of chemotherapy

Solid Tumor Expansion Cohort Status

- Expansion cohorts initiated to estimate single agent activity and better define safety in potential combination study populations
- 3 mg/kg dose selected based upon immunological activity in dose escalation and preclinical modeling
- CDX-1127 well-tolerated to date
- Several tumor biopsies have been collected to assess the effect of treatment on the tumor microenvironment

Solid Tumor Dose-Escalation Results

Dose-Escalation is complete

Pre-Treatment Patient Characteristics (n=25)

	Age, years [median (range)]	66 (42-83)	
	Male [n(%)]		16 (64%)
	ECOG Performance Status [n (%)]	0 1	11 (44%) 14 (56%)
	Tumor Types [n (%)]	CRC Melanoma Ovarian Prostate RCC NSCLC	10 (40%) 7 (28%) 3 (12%) 2 (8%) 2 (8%) 1 (4%)
	Stage at Study Entry [n (%)]	III IV	2 (8%) 23 (92%)
	Duration of Disease, years [me	6.7 (1-24)	
	Lines of treatment [median (range)]	Anticancer therapy Cytotoxic chemotherapy	5 (0-8) 3 (0-8)
	Prior treatments received [n (%)]	Radiation Immunotherapy	14 (56%) 6 (24%)

- Consistent increase of NK cells particularly at 3 mg/kg dose level
- NK cells are CD56 dim, consistent with higher cytolytic function
- Significant decrease in regulatory T cells across various dose levels · Similar changes observed when analyzed as absolute numbers

400

Increased expression of the activation marker, HLA-DR

168

· No evidence of decreased T cell memory response, some patients show marked increases in response to recall antigens improved response to a non-specific stimulant

Melanoma:

- 14 patients enrolled; 8 continue treatment
- 7 patients not yet seen for 1st response assessment
- A uveal melanoma patient has maintained stable disease for 5.7 months and is entering third treatment cycle.
 - 12% shrinkage of measurable disease

Renal Cell:

- 8 patients enrolled
- 7 patients not yet seen for 1st response assessment
- 1 patient had progressive disease at day 85

Analysis of serum levels of cytokines and chemokines

Pre (Last Dose) 6 hrs (Last Dose)

among patients The induction of IP-10 is consistent with the response to CDX-1127 administration to human CD27 transgenic mice

Conclusions:

- CDX-1127 (up to 21 infusions over 14 months) have been welltolerated with minimal toxicity
- CDX-1127 induces immunologic activity, consistent with mechanism of action
 - Increase in serum IP-10 levels T cell activation (MHC Class II &
 - Decrease in Treg
- functional response)
- Increased NK cells
- No evidence of broad T cell depletion
- Preliminary evidence of anti-tumor activity in refractory tumors, which is being explored in expansion cohorts
- The combined safety and activity data from the hematologic and solid tumor arms of this phase 1 study strongly support the further development of CDX-1127, particularly in combination therapy.

