

Presented at the 34rd Annual Meeting of the Society for Immunotherapy of Cancer, November 9, 2019/ Poster # P827

Combining CD27 costimulation and PD-1 blockade into a bispecific antibody improves T cell activation and anti-tumor activity over combination of individual antibodies

Laura A. Vitale, Lawrence J. Thomas, Thomas O'Neill, Jenifer Widger, Laura Mills-Chen, Andrea Crocker, Colleen Patterson, Anna Wasiuk, Eric Forsberg, James Boyer, Crystal Sisson, Jeffrey Weidlick, Shannon Renn-Bingham, Ioannis Papayannopoulos, Russ Hammond, Joel Goldstein, Henry C. Marsh, Jr., Li-Zhen He, Michael Yellin, Tibor Keler. Celldex Therapeutics, Inc., Hampton, NJ 08827, Needham, MA 02494, and Fall River, MA 02723

BACKGROUND

- This program builds from our experience with varlilumab (CD27 agonist mAb) in combination with nivolumab that demonstrated:
 - No additive toxicity concerns
 - Enhancement of tumor PD-L1 expression and CD8 T cells
 - Durable responses in patient populations unlikely to respond to PD-1 monotherapy
 - Best clinical activity observed with regimen that used similar doses (3 mg/kg) of each antibody administered on the same schedule
- CDX-527 is a bispecific antibody (BsAb) that combines blocking the PD-1 checkpoint pathway with CD27 costimulation of T cells
 - Designed from novel PD-L1 and CD27 antibodies
- Advantages of the BsAb include:
 - Cost and development advantages relative to 2 mAbs
 - Better CD27 agonist activity via PD-L1 cross-linking especially in tumor micorenvironment

CDX-527 αPD-L1xαCD27 BsAb

Full length αPD-L1 mAb 9H9 (human IgG1κ) genetically linked to single chain variable domains of α CD27 mAb 2B3

- Includes human Fc region as part of the BsAb construct
 - Retaining Fc receptor cross-linking for CD27 agonist activity
 - Retaining FcRn binding activity for antibody-like half-life (PK)
- Enabling Protein A purification
- Tetravalent antigen binding
 - Bivalent for CD27 and PD-L1

High Affinity to PD-L1 and CD27

Sensorgrams of bio-layer interferometry analysis using anti-

human IgG-Fc sensors to capture CDX-527 followed by antigen

Inhibition of PD-1 and CD80

CDX-527 Potently Inhibits PD-L1 binding to PD-1 or CD80

293-PD-L1 cells were incubated with samples and PD1-biotin.

Binding detected with SA-PE. AVE = α -PD-L1 mAb Avelumab

Sample and PDL1-biotin incubated on CD80 coated

plate. Binding detected with SA-HRP

T Cell Co-Stimulation

Efficient T cell co-stimulation by CDX-527 through CD27 and TCR Signaling

Antibodies are added, then purified T cells. IL-2/IFN-γ levels in supernatant are measured at 72 hrs

T Cell Activation With CDX-527 Requires Both PD-L1 and OKT3

Combination of Parental Antibodies Does Not Provide Efficient T Cell Activation

Mixed Lymphocyte Reaction

CDX-527 is More Effective Than Parental Antibodies in MLR Activity

Pilot Non-Human Primate Study

Mab-like pharmacokinetics and no toxicity signals in primate study

- 21 day study to assess pharmacokinetics and collect preliminary safety data
- Cynomolgus macaques (3) were administered a bolus injection of 7 mg/kg CDX-527
- No significant changes were observed in any clinical parameters: Clinical Observations, Body Weight, Body Temperature, Hematology, Coagulation, Clinical Chemistry,
- PK analysis suggest T1/2 ~ 110 hrs. Development of potent ADA obstructed PK assessment beyond 200
- Upregulation of chemokine levels associated with CD27 activation

Serum levels of CDX-527 and ADA were determined by ELISA. Cytokines were measured by Luminex®. Baseline and highest on study level (peak) are shown

αPD-L1, AVE

CDX-527 Surrogate BsAb

Potent Expansion of Vaccine Induced CD8 T Cell Response

Anti-Tumor Activity

CDX-527 Surrogate is More Effective Than Parental Antibodies in BCL-1 Lymphoma Model

CDX-527 Surrogate has Direct Anti-Lymphoma Activity in Xenograft Model

Clinical Study Plans

Planned Dosing Cohorts

Study Portion	Cohort	CDX-527 Dose Level (mg/kg q2w)	Patients (n)
Dose-Escalation	1	0.3	3-6
Multiple tumor types	2	1.0	3-6
	3	3.0	3-6
	4	6.0	3-6
	5	10.0	3-6
Tumor-Specific Expansion Cohorts	6-9	Dose(s) chosen during escalation	Up to 15 per cohort

Study Schema

Summary and Next Steps

Bispecific antibodies (BsAbs) that engage two independent pathways involved in controlling immune responses to tumors are a rapidly growing area for the development of next generation PD-1 inhibitors

Our prior clinical experience with combining CD27 activation and PD-1 blockade provide the rationale for linking these two pathways into one molecule

The preclinical studies demonstrate that CDX-527 is more potent at T cell activation and anti-tumor immunity than the combination of parental monoclonal antibodies

Next steps for CDX-527 include:

- Completion of CDX-527 GMP manufacturing activities
- Completion of IND-enabling studies
- IND planned for H1 2020 Phase 1 dose escalation trial

