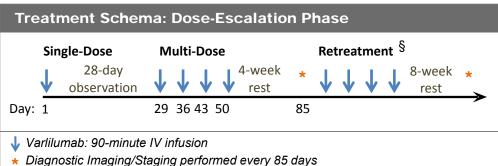

Phase I Evaluation of an Agonist Anti-CD27 Human Antibody (Varlilumab [CDX-1127]) in Patients with Advanced Hematologic Malignancies

Stephen M. Ansell¹, Donald W. Northfelt², Ian Flinn³, Howard A. Burris³, Shira N. Dinner⁴, Victor M. Villalobos⁵, Branimir I. Sikic⁵, Matthew H. Taylor⁶, Lana Pilja⁷, Thomas R. Hawthorne⁷, Michael J. Yellin⁷, Tibor Keler⁷, Thomas A. Davis⁷

1. Mayo Clinic, Rochester, MN; 2. Mayo Clinic, Scottsdale, AZ; 3. Sarah Cannon Research Institute, Nashville, TN; 4. Northwestern University Robert H. Lurie Comprehensive Cancer Center, Chicago, IL; 5. Stanford Cancer Institute, Stanford, CA; 6. Oregon Health & Science University, Portland, OR; 7. Celldex Therapeutics, Inc., Hampton, NJ


Varlilumab (CDX-1127): A Fully Human Monoclonal Antibody to CD27

- CD27 is a potent co-stimulatory molecule that drives T cell activation and survival through interaction with CD70
- Varlilumab is an agonist anti-CD27 IgG1 mAb that induces activation and proliferation of human T cells when combined with T-cell receptor stimulation.
- Varlilumab has been shown effective in syngeneic murine tumor models alone, and in combination with chemotherapy or check-point inhibitors.
- CD27 can be expressed at high levels on lymphoma and leukemia cells, presenting a target for direct anti-tumor effects.
- Varlilumab has potent anti-tumor effects in xenograft models of human lymphoma cell lines and promotes antibody-dependent cell-mediated cytotoxicity.
- malignancies, varlilumab may induce antitumor activity by both immune activation and direct effector

Phase 1 Clinical Study Design

- Two study arms: Hematologic Malignancies and Solid Tumors
- (Abstract #3027/Poster Board: #19)
- Hematologic malignancy patient eligibility:
- Histologic diagnosis of a B cell hematologic malignancy that may express CD27
- Progressive disease subsequent to previous therapies; no remaining approved therapy options
- Washout from prior therapies including:
- ≥4 weeks for chemotherapy (or 5 half-lives, if longer), monoclonal based
- therapies and systemic radiation
- ≥2 weeks for all other immunotherapy
- Standard 3+3 dose-escalation (0.1, 0.3, 1, 3 or 10 mg/kg)
- Weekly dosing to establish safety with maximum exposure
- Potential for subsequent malignancy-specific expansion cohorts to further characterize activity of varlilumab
- Study recently amended to include evaluation of T-cell malignancies

§ Up to 4 retreatment cycles (5 cycles total) permitted for patients with Stable Disease

Patient Characteristics/Disease History

Patient Characteristics/	Disease History	
		Dose-Escalation (n=24)
Age, years [median (range)]		61 (23-92)
≥ 65 [n(%)]		8 (33%)
Male [n(%)]		16 (67%)
ECOG Performance Status [n (%)]	0	8 (33%) 16 (67%)
Tumor Types [n (%)]	Diffuse large B-cell (DLBCL) Follicular Hodgkin Non-Hodgkin B-cell, NOS	10 (42%) 5 (21%) 7 (29%) 2 (8%)
Stage at Study Entry [n (%)]	II III IV	1 (4%) 5 (21%) 18 (75%)
Duration of Disease, years [median (range)]		4.7 (0.7-26.9)
Lines of treatment [median (range)]	Anticancer therapy Cytotoxic chemotherapy	5.0 (1-12) 3.0 (1-9)
Prior treatments received [n (%)]	Radiation Autologous Transplant	14 (58%) 11 (46%)
CD27 expression in tumor cells (IHC) [n (%)]	Follicular (n=2) Hodgkin (n=3) DLBCL (n=4)	2 (100%) 0 (0%) 0 (0%)

Dosing and Toxicity

No dose-limiting toxicity (DLT) or identification of a Maximum Tolerated Dose (MTD)

CTCAF

- Infrequent treatment-related AEs; nearly all mild to moderate in severity
- One patient discontinued treatment due to grade 1 vision changes No indication of immune-mediated adverse events (colitis, endocrinopathies, etc.)

Treatment-Related Adverse Events

typically associated with check-point blockade

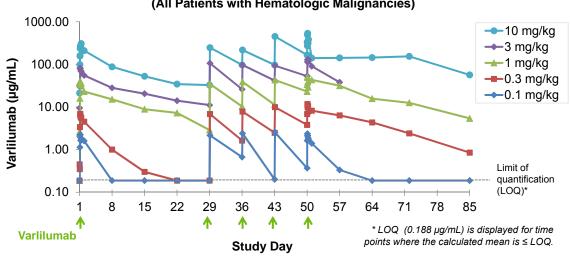
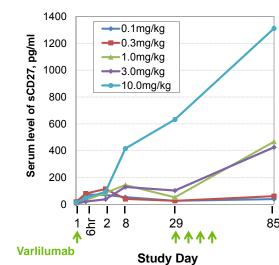

	Grade 1	Grade 2	All Grades
Any Treatment-Related Event	7 (29)	6 (25)	13 (54)
Fatigue	3 (13)	3 (13)	6 (25)
Decreased appetite	4 (17)		4 (17)
Anemia	2 (8)	1 (4)	3 (13)
Nausea	3 (13)		3 (13)
Diarrhea	2 (8)		2 (8)
Vomiting	2 (8)		2 (8)
ALT increased	1 (4)	1 (4)	2 (8)
AST increased	1 (4)	1 (4)	2 (8)
Headache	1 (4)	1 (4)	2 (8)
Blood alkaline phosphatase increased		1 (4)	1 (4)
Neutropenia		1 (4)	1 (4)
Hypotension		1 (4)	1 (4)

Table does not include grade 1 adverse events that occurred in one patient. Patients with multiple occurrences of an event are counted only once at the greatest severity experienced.

No grade 3, 4 or 5 treatment-related adverse events have been reported.

Varlilumab Pharmacokinetics

Varlilumab Serum Levels After a Single Dose and through 1 Cycle of Dosing (All Patients with Hematologic Malignancies)

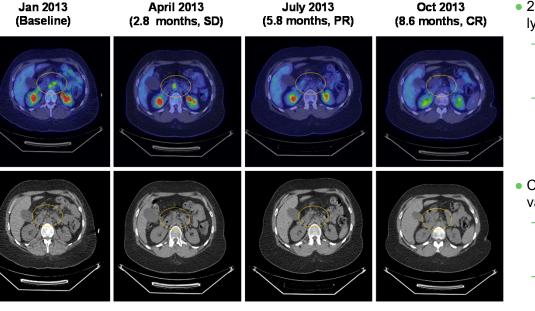


Pharmacokinetics similar for patients with solid tumors and hematologic malignancies. For all pooled patients:

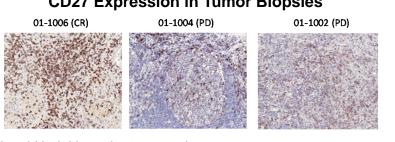
- T_{1/2} ranged from 6 days at 1.0 mg/kg to 10.6 days at 10 mg/kg in day 1 dosing
- Exposure was linear across dose groups from 0.3-10 mg/kg

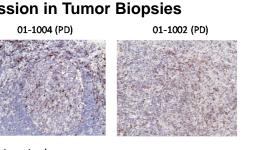
No anti-varlilumab antibody responses detected in patients with hematologic malignancies

Varlilumab Increases the Serum Level of Soluble CD27



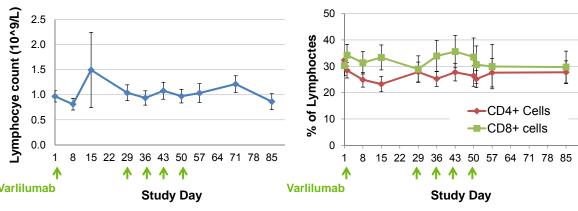
- sCD27 was measured with an ELISA using antibodies that bind to CD27 at noncompeting sites with varlilumab.
- Increases in sCD27 are dose dependent and increase with time.
- Nonclinical models indicate that the increase in sCD27 is largely mediated through stabilization of sCD27 by complexing with the antibody. The anti-VEGF antibody (bevacizumab) similarly stabilizes serum VEGF levels (ref. 1,2).
- Increased sCD27 is consistent with an inflammatory effect and has been recently associated with improved response to immunotherapy (ref. 3).


Clinical Activity


- Dose-escalation is complete with 24 patients enrolled.
- 2 patients (10 mg/kg) continue on treatment with first response assessment pending
- One patient has experienced a Complete Response (ongoing at 12.9 months; see adjacent panel)
- Three patients have had Stable Disease (durations of 4.5, 5.6 and 14 months).
- 67 year old male with Stage III non-Hodgkin lymphoma who received varlilumab (0.3 mg/kg) experienced 36% shrinkage of measurable disease, including complete disappearance of disease in inguinal and iliac regions
- PFS of 5.6 months
- Nine prior courses of therapy including combination chemotherapy, rituximab, ibritumomab tiuxetan and traditional radiation
- 52 year old male with Stage IV follicular lymphoma had a PFS of 14 months while receiving varlilumab (0.3 mg/kg for single dose, then 0.1 mg/kg for 5 treatment cycles)
- 58 year old male with Stage IV follicular lymphoma had a PFS of 4.5 months while receiving varlilumab (0.1 mg/kg)
- Six prior courses of therapy including combination chemotherapy, rituximab, ibritumomab tiuxetan, and experimental therapy.

Stage IV Hodgkin Lymphoma Patient with Complete Response

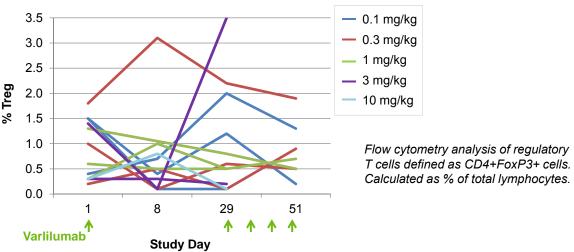
CD27 Expression in Tumor Biopsies


28 year old female with Stage IV Hodgkin lymphoma with para-aortic involvement

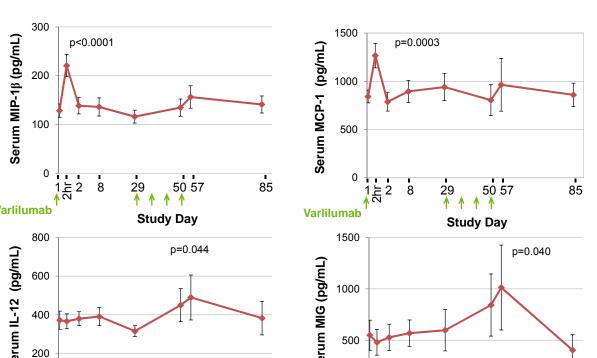
- Inadequate response to induction, and progression through or shortly thereafter four subsequent salvage attempts
- Most recently, had progressed 4 months after multiple sequential myeloablative chemotherapy with hematopoietic stem cell rescue followed by brentuximab vedotin consolidation
- Complete Response (CR) after three cycles of varlilumab (0.3 mg/kg)
- Area of measurable lesions first increased by 9%, then regressed to achievement of
- B symptoms (drenching sweats, pruritus and weight loss) completely resolved
- Remains in remission at 12.9+ months
- Reed-Sternberg cells lacked detectable CD27 expression
- CD27 expressing lymphocytes present in inflammatory infiltrate
- CD27+ T cell infiltrates more pronounced relative to 2 other Hodgkin patients

Six additional Hodgkin patients treated

- One (10 mg/kg) has not yet been seen for the first tumor response assessment
- One (10 mg/kg) discontinued study due to treatment-related vision changes prior to first response assessment
- Three (0.1, 0.3 and 10 mg/kg) had progression of disease by the first response assessment
- One (10 mg/kg) died due to disease progression prior to first response assessment


Varlilumab Does Not Significantly Deplete Lymphocyte, B or T Cell Count

Mean values shown for all patients across all dose levels


- Absolute lymphocyte counts are not markedly changed.
- Flow cytometry showed similar levels of CD4+ and CD8+ T cells throughout treatment.

Effect on T Regulatory Cells

 Significant reduction in T regulatory cells observed in 50% of varlilumab-treated patients analyzed to date

Varlilumab Induces Pro-inflammatory Cytokine Secretion

- Mean values shown for all patients across all dose levels Cytokines measured by Luminex
- Early induction of MIP-1β and MCP-1 (at 2 hours post dose) and later induction of IL-12 – Other cytokines with significant early induction include IL-6, IL-8 and MIP-1α (not
- No increase in IP-10 noted (increased IP-10 was observed in dose-escalation in patients

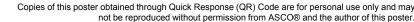
Conclusions:

- Varlilumab has minimal toxicity in patients with B cell lymphoma, even in the elderly
- PK profile is dose proportional, consistent with human antibodies and similar in patients with solid tumors and hematologic malignancies
- Dose accumulation is observed during multi-dose
- Good drug exposure even at lower dose levels
- Clearance is seen at low doses given less frequently than weekly
- No anti-varlilumab antibody responses detected

No significant depletion in absolute lymphocyte

- counts, T cells or B cells
- Evidence of increased immunologic activity, consistent with expected mechanism of action:
- Increased soluble CD27
- Reduction of circulating Treas
- Induction of pro-inflammatory cytokines
- Anti-lymphoma activity is supported by a Complete Response seen in a patient with heavily pretreated Hodgkin Disease

Future Directions


- The combined safety and activity data from the hematologic and solid tumor arms of this phase 1 study strongly support the further development of varlilumab, particularly in combination therapy.
- Optimal dosing regimen to be defined
- Preliminary data suggest low dose, intermittent activation may be preferable
- Future studies to explore continuous receptor saturation vs. 'on-off' signaling
- Next steps:
- Await data in T-cell lymphomas
- Analyze biologic characteristics of Hodgkin patients to explore potential for biomarkers of sensitivity to varlilumab and optimal dosing
- Plan combination development (phase 1/2) studies) with rituximab, pomalidomide and

1. Gordon, et al. J Clin Oncol. 2001; 19:843-50. 2. Yang, et al. N Engl J Med. 2003; 349:427-34.

3. Huang, et al. J Immunol 2013 Jun 15;190(12):6250-8.

